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• A pour but l’étude des systèmes macroscopiques en terme 
d’échanges d’énergie et/ou de matière avec le milieu extérieur.     

– Classique(décrit)

� relations entre les propriétés macroscopiques

– Statistique(explique)

� lois de la mécanique    microscopiques

• Principes fondamentaux

– 1er conservation de l'énergie

– 2ème sens d'une transformation

1.1. Thermodynamique classique et statistique
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1.2. D1.2. Dééfinition Systfinition Systèème Thermodynamiqueme Thermodynamique

Q = 0  le système est dit adiabatique

Système Échange Matière Échange Énergie

isolé non non

fermé non oui

ouvert oui oui

SYSTEME

Q > 0

Milieu Extérieur

Q < 0

Milieu Extérieur

SYSTEME

Par convention, une énergie reçue par le système est positive
et une énergie fournie par le système est négative .
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• Macroscopiques(variables d'état)

– variables extensives(V, m, ...): 
� proportionnelles à la quantité de 

matière

– variablesintensives(P, T, ...):
� ne dépendent pas de la quantité de 

matière

système milieu extérieur

(P, V, T)

P1 
V1

T1

P2

V2

T2

P1 =  P2 =  P
T1 =  T2 =  T

V1 =  V2 =  V/2
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1.3. État d'équilibre
• État de repos à l'échelle macroscopique atteint spontanément par 

un système abandonné à lui-même. 
• Les variables macroscopiques ont alors des valeurs bien définies et 

fixes.
• TD étudie les propriétés de la matière à l'équilibre
• Système hors d'équilibre : paramètres macroscopiques (P, T, …) 

mal définis
1.4. Équation d’état
• Les différentes variables macroscopiques qui caractérisent un 

système ne sont pas toutes indépendantes

• Relation entre V, P et T
- 2 de ces grandeurs : variables indépendantes
- la 3ème: fonction de ces 2 variables

PV = nRT (R = 8,314 J.mol-1.K-1)
• Équation d’état = Relation entre les variables d'état du système à

l'équilibre.
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1.5. Transformations
Quand l'état d'un système change,                                    
il est temporairement hors équilibre.

– Réversibles
� Système à chaque instant dans un état                                

très proche d'un état d'équilibre
� Il suffit de changer très peu les conditions extérieures pour 

que le sens de la transformation se renverse
� Transformation infiniment lente

– Les transformations qui ont lieu spontanément dans la 
nature sont irréversiblesen raison principalement des 
forces de frottement qui transfèrent de l’énergie 
thermique au milieu extérieur                    
(phénomènes dissipatifs). yA

y

xA xB

B

A

x
yB

y

B

A

x
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2.2. TempTempéérature et Chaleurrature et Chaleur
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2.1. Température et Chaleur
• Notion subjectivede la température :

par le sens du toucher
• Nécessité d'une référence

2.2. Échelles de température
• Grandeur physique x du thermomètre : température T = f(x)

[ex: x = hauteur d'une colonne de Hg   et   T = ax + b]

• Echelle de température Celsius (centésimale)
– Intervalle entre température d'ébullition de l'eau (Te = 100° C) 

et température de fusion de la glace (Tf = 0° C) à Patm,  divisé
en 100parties égales :

Relation linéaire rarement vérifiée!

0

100 0

x x
T( C) 100

x x

−° = ⋅
−
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2.3. Équilibre Thermique
– 2 systèmes de températures différentes au 

contact l'un de l'autre :
� le plus chaud se refroidit

� le plus froid se réchauffe

jusqu'à l'égalité des températures
– Quand l'évolution a cessé :       

Équilibre thermique

T1 > T2

Téq Téq



11

2.4. Principe zéro de la TD
• Deux systèmes en équilibre thermique 

avec un troisième sont en équilibre 
thermique entre eux

- Si on définit la température d'un système

particulier (= thermomètre  B )

- Alors la température d'un système est définie 
comme étant la même que celle du 
thermomètre en équilibre thermique

• Deux systèmes à la même température 
sont alors en  équilibre thermique entre 
eux

AB

C

CB

A

= équilibre 
thermique )

(
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2.5.  Chaleur - Équilibre thermique
• L’agitation moléculaire plus importante des systèmes 

chauds se transmet aux systèmes froids lors de collisions 
en transférant ainsi de l’énergie.

• Chaleur Q (énergie thermique) :: énergie transférée par 
chocs moléculaires désordonnés 

• À l’équilibre thermique, le transfert de chaleur cesse.
Équilibre thermique très lent à s’établir

• Paroi adiabatique : ne transmet pas la chaleur (isolante)
(ex : laine de verre, polystyrène)

• Transformation adiabatique :
le système n'échange pas de chaleur avec l'extérieur 
(rapide)

• Paroi diathermique : perméable à la chaleur
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3.3. Gaz parfaitGaz parfait

Gaz rGaz rééelel
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3.1.  Le modèle du gaz parfait
État idéal vers lequel tendent les gaz quand ils sont dilués :
distance intermoléculaire moyenne >> portée des forces 
intermoléculaires ⇒⇒⇒⇒ pas d'interactions mutuelles

molécules ponctuelles, sans interactions
libre déplacement à l'intérieur du récipient

Ces hypothèses   ⇒⇒⇒⇒            P V  =  a Tc  +  b  (Tc en °C)

3.2. La température absolue d’un gaz parfait
– Comportement des gaz réels raréfiés

V et P en fonction de TC

– T minimum (zéro absolu)
– T absolue (K)

T = TC + 273,15
∆∆∆∆T = ∆∆∆∆TC

V

Tc0- 273,15

P = CteP = Cte

(°C)
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3.3. Échelle de température absolue - Kelvin
glace fondante eau bouillante

C constante qui dépend de la masse de gaz

PV = nRT R = 8,314 J.K-1.mol-1

• Valable pour tous les gazà haute température et à faible 
concentration

0 0 0P V C T⋅ = ⋅ 100 100 100P V C T⋅ = ⋅

0 0
0

100 100 0 0

P V
T 100 273,15 C

P V P V
= ⋅ = °

−

CT(K) T ( C) 273,15= ° +

100 0T T 100= +
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3.4.  PV = nRT résume plusieurs lois
– loi Boyle – Mariotte

A température constante (transformation isotherme)

P inversement prop. à V PV  constant

Lorsque T2 = T1 � PV = Cte

P

V

T = Cte

V

PV T = Cte

piston

gaz
parfait

gaz
parfait

P1, V1, T1 P2, V2 = V1/2, T2

2 1
1 1 2 2

P V
P V P V

2
= =

2 1P 2P=
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3.4.  PV = nRT résume plusieurs lois
– Loi Gay-Lussac et Loi de Charles

� A pression constante
transformation isobare
V = V0 (1 + αT) α coef dilatation isobare (K-1) 
Loi de Gay-Lussac

� A volume constant

transformation isochore

P/T = Cte
Loi de Charles

– Loi d’Avogadro
Volume occupé par une mole de gaz parfait à
TC = 0°C et P = P0 = Patm= 1,013.105 Pa ?

V = Cte

TC (°C)
0 30

P(mm Hg)

15

740

820

5

nRT 1 8,314 273,15
V 22,4 L

P 1,013.10

× ×= = ≈
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3.5. A l'échelle microscopique

PV = NkBT kB = cste de Boltzmann

à l’équilibre N = nombre de  molécules 

W fourni ⇒ Énergie interne augmente

Degré d'agitationdes molécules

Température = paramètre qui caractérise ce degré d'agitation

3.6. Équivalence micro/macro de la T° absolue
N  nombre de molécules

kB constante de Boltzmann

n  nombre de moles
R  constante des gaz parfaits

NA = 6,02.1023 mol-1

nombre (constante) d'Avogadro

23 1 5 1
B

A

R
k 1,38.10  J.K 8,62.10  eV.K

N
− − − −= = =

BP V N k T=

P V n R T=

B
A

n R
k R

N N
= =



19

3.7. Température & énergie moléculaire

3.8. Théorie cinétique des gaz parfaits : pression, 
énergie Interne

– pression P exercée par (1)
les N molécules sur les parois :

– Énergie cinétique totale de translation : (2)

(3)

2 2 2
c,moy i i i qmoy

i i

1 1 1 1 1
E m v m v mv

N 2 2 N 2
   = = =   
   
∑ ∑

( )2 2 2 2 2
qmoy i 1 2 3

i

1 1
v v v v v ...

N N
 = = + + + 
 
∑

2
qmoy

1 N
P mv

3 V
=

2
t qmoy

N
U mv

2
=

t t B

2 3
PV U U Nk T

3 2
= → =
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T = 300 K  : vqmoy = 1,93.103 m/s Ec,moy = 6,21.10 -21 J 
T = 1000 K : vqmoy = 3,53.103 m/s
T = 2000 K : vqmoy = 5,0.103 m/s

3.9. Énergie cinétique moyenne et vitesse quadratique 
moyenne

• Vitesse quadratique moyenne :

Alors (2) & (3)⇒⇒⇒⇒ t B
qmoy

2U 3k T
v A T

N.m m
= = =

2
qmoyv v=

Exemple: Quelle est la vitesse quadratique moyenne d'une 
molécule de dihydrogène (H2) à la températureT ?

B A
3

A A A

3k 3R / N 3R 3 8,314
A

m M / N M 2.10−

×= = = =
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3.10. Distribution des vitesses moléculaires de H2

Pour une molécule de dihydrogène à 27 °C :   vqmoy = 1,93.103 m.s-1

Distribution deMaxwell-Boltzmann
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3.11. Facteur de Boltzmann
→ proba d’occupation d’un niveau d’énergie

Rapport de population entre 2 états d’énergie à une 
température d’équilibre :

2

B B

E mv
  
k T 2k Te e

− −
=

2

2 1B

B B

2

B

E
E E Ek T
k T k T2

E
1 k T

N e
e e

N
e

− − ∆− −

−
= = = T

N1

N2

N

∆E = E2 – E1

N1

N2

E1

E2
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3.12. Mélange de gaz parfaits – Loi de Dalton
• Chaque gaz du mélange se comporte comme si les autres gaz 

étaient absents (pas d'interaction).
• La pression partiellede chaque gaz est celle qu'il exercerait s'il 

occupait seul tout le volume :
Ex :  nO2 moles d'O2 +    nN2 moles de N2
Les pressions partielles du O2 et du N2 , PO2 et PN2  satisfont chacune 
à une équation d'état :

PO2 . V  =  nO2 . RT
+ PN2 . V  =  nN2 . RT

(PO2 + PN2 ) V  = (nO2 + nN2 ) RT

PV  = nRT avec pression totale P = (PO2 + PN2)

et nb total de moles n = (nO2 + nN2) 

Loi de Dalton : La pression du mélange est égale à la somme des P 
partielles des différents gaz.
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Mélange de gaz parfaits - Applications

Calcul de PO2
au niveau de la mer et à une

altitude de 7000 m où P = 0,45.105 Pa = 0,45 bar ?

(une mole d'air sec : 0,78 mol de N2, 
0,21 mol de O2, 0,009 mol d'Ar, ...
proportions ~ constantes jusqu'à une
altitude de 80 km)

PO2 
/ P = nO2 

/ n = 0,21

- Niveau de la mer : P = 1 bar  → PO2
= 0,21 bar

- À 7000 m : P = 0,45 bar → PO2
= 0,21 x 0,45 =0,095 bar

7000 m

0



25

3.13. Solubilité des gaz – Loi de Henry
La concentration Cd d'un gaz dissous dans le plasma sanguin est  
proportionnelle à la pression partielle de ce gaz dans l'air respiré.

ΦT Coefficient de solubilité dépend de :
- la nature du gaz ET du liquide
- la température

Exemple : Plongeurs respirent un gaz enrichi en  N2

À 20 m : P ≈ 3 Patm→ PO2
et PN2

≈ 3 x Pnormale
Coefficient de solubilité du N2 est élevé
→ Remontée rapide ⇒ Maladie des Caissons (Bulles 
os, tissus)
Application Médicale: Ventilation O2 pur, oxygène 
hyperbare2525

d TC .P= Φ
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Plongée sous-marine
• L'homme commence à souffrir de la toxicité de l'O2 à partir du 

moment où la PO2 atteint environ 0,8 bar.

• Sachant que la pression hydrostatique augmente d’1 bar tous les

h = ∆P / ρg = 10,3 m

déterminer la profondeur H à laquelle la respiration d'air de 
composition normale entraînerait des effets toxiques dus à l'O2 :

PO2
/ P = nO2

/ n = 0,21

P = 0,8 / 0,21 = 3,81 bars
H = (3,81-1) x 10,3 ≈≈≈≈ 29 m29 m29 m29 m
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3.14. LES GAZ REELS
• Forces intermoléculaires

(répulsion à courte distance, attraction à longue distance)

• Equation de Van der Waals (pour n = 1 mol)

Pression supplémentaire volume des molécules

due aux interactions (covolume)

entre les molécules

( )2

a
P V b RT

V
 + − = 
 
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3.15  Gaz réels - Isothermes

: palier de 
liquéfaction (mélange 
liquide - gaz)

: courbe de 
saturation

– C: point critique à partir 
duquel apparaît la phase 
liquide - gaz

– la valeur de TC dépend 
du gaz

P

V

mélange
liquide-gaz

Tc

IsothermesIsothermes

C

T < Tc

gaz
liquide

T >> Tc

Gaz ParfaitGaz Parfait
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4. L’ENERGIE INTERNE

5. 1er PRINCIPE TD - ENTHALPIE

6. Prop. THERMIQUES DE LA MATIERE

7. 2ème PRINCIPE DE LA TD – ENTROPIE 

DESORDRE ET SPONTANEITE

8. ENTHALPIE LIBRE et LOI ACTION 

MASSE
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L'L' éénergie interne (nergie interne (U))
•• éénergie associnergie associéée e àà la mla méécanique internecanique interne

du systdu systèème me àà l'l'ééchelle microscopiquechelle microscopique

•• Gaz parfaitGaz parfait
– EP = 0= 0 (pas d(pas d’’ interactions entre molinteractions entre moléécules)cules)

–– Ut = EC

•• systsystèème me àà l'l' ééquilibre quilibre : U : U constanteconstante

•• ff°° de l'de l'éétat macroscopique du systtat macroscopique du systèème [(me [(VV,,TT); (); (VV,,PP); (); (PP,,TT)])]

•• U est une fonction d'U est une fonction d'éétattat
–– ff°° des 2 variables inddes 2 variables indéépendantes choisies :pendantes choisies :

U =U(V,T); U = U(P,T)

∆∆∆∆U = Uf -Ui

c pU E E= +∑ ∑

2

t i

1
U U mv

2
= =∑
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Échanges d'énergie du système avec le milieu 
extérieur ∆∆∆∆U = W + Q

• Travail W :  forces ordonnées
• Chaleur Q : interaction désordonnée

des molécules

• Convention de signe : positif quand "reçu" par le système

Travail d’une force
• Définition

– Point matériel soumis à l’action d’1 force extérieure     , 
se déplaçant selon la trajectoire AB

– Déplacement élémentaire    :
� norme
� direction tangente à trajectoire
� sens du déplacement

-+
Milieu ext
syst

F
�

d
���
ℓ

z

αααα

dℓℓℓℓ

B

A y

x

F
�
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Travail d’une force
– Travail élémentaire δW de la force :

grandeur scalaire algébrique (> 0 ou < 0)

0 ≤ α < π/2 ⇒ cos α > 0 ⇒ travail moteur

α = π/2 ⇒ cos α = 0 ⇒ travail nul

π/2 < α ≤ π ⇒ cos α < 0 ⇒ travail résistant

– Expression analytique :

– Travail total de A à B :

circulation du vecteurle long de la trajectoire AB

[W] = ML 2T-2 u SI →→→→ joule (J)

F
�

W F d F d cosδ = ⋅ = ⋅ α
��� ���� �
ℓ ℓ

( )x y z x y z

dx

W F   F   F dy F dx F dy F dz

dz

 
 δ = ⋅ = ⋅ + ⋅ + ⋅
 
 
 

B

AB A
W F  d= ⋅∫

����
ℓ
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– Exemple : travail des forces de pression
� Transformation élémentaire

cylindre creux de section S, muni d’un piston et renfermant   
1 gaz à la température T, à la pression P, qui occupe le 
volume V.

: force de pression extérieure

α = 0 si déplacement vers le bas
α = π si déplacement vers le haut
Avec ⇒ (              )

� Expression algébriquedu travail des f. de pression
compression dV < 0 ↔ travail moteur δW > 0
détente dV > 0 ↔ travail résistant δW < 0

� Transformation réversible ⇔⇔⇔⇔ Pext = P à chaque instant

dV < 0 ⇒ δW > 0 énergie méca reçue par syst
dV > 0 ⇒ δW < 0 énergie méca fournie par syst

F
�

dx

P,V,T

F
�

W F dx F dx cosδ = ⋅ = ⋅ α
��� ���� �

SPF ext ⋅=
�

extW P S dxδ = ⋅ ⋅
���

1cos =α
dVPW ext ⋅=δ

W P dVδ = − ⋅
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– Application : transformation à pression constante

– Transformation finie, réversible, isoT d’1 GP
� V i → Vf, Pi → Pf, T = cte

� équation d’état des gaz parfaits → P = nRT/V

car à T cte→ PiV i = PfVf

34

f

i

Vf

i V

W W PdV= δ = −∫ ∫

P

V

ViP0
Vf

W > 0

W PdVδ = −

( )0 0 f iP P  W P V V= → = − −

f

i

V

V
W P dV= − ⋅∫

[ ]f f

ii

V V f
VV

i

VdV
W nRT nRT nV nRT n

V V
= − = − == −∫ ℓ ℓ

i

f

V
W nRT n

V
= ℓ i

f

P
W nRT n

P
= ℓ

P

Vf Vi

V
W > 0
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Chaleur Q - joule
interaction désordonnée des molécules (énergie thermique)
• Q n'est pas une fonction d'état !!!
• Expression en unité SI d’énergie : joule (J)

– Historiquement : calorie = quantité de chaleur nécessaire pour 
élever 1 g d’eau de 14,5 °C  à 15,5 °C

– Facteur de conversion : 4,18 J.cal-1

T

Tf

temps

Glace 
fondante
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Chaleur Q – joule
• La chaleur est équivalente à de l'énergie !

– Q →W ≠ 0
Ex: dilatation d'un gaz à Pext cte :
W = - Pext(Vf - V i)

– Q   mais  W = 0  (V cte ) :
Q = Uf - Ui

L'énergie cinétique moyenne
des molécules augmente

V = Cte

Pext = Cte

Pext
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5.5. Le 1Le 1erer principe de la principe de la 
thermodynamique thermodynamique --

EnthalpieEnthalpie
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Le premier principe de la thermodynamiqueLe premier principe de la thermodynamique

La variation d’énergie ∆U du système au cours d’une 
transformation quelconque est égale à la quantité d’énergie 
échangée avec le milieu extérieur.

Transformations réversibles & irréversibles

3 δQ différentes selon couple (P,V), (T,V), (P,T)

U W Q∆ = +
dU PdV Q= − + δ
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CapacitCapacitéé calorifique calorifique àà volume constant Cvolume constant Cvv

Par définition :

Puisque U = f (T) uniquement, pour 1 GP

CapacitCapacitéé calorifique calorifique àà pression constante Cpression constante Cpp

ENTHALPIE

Puisque H = f (T) uniquement, pour 1 GP 39

V

U
Q dT

T
∂ δ =  ∂ 

v
V

U dU
C

T dT
∂ = = ∂ 

v

Q
C

dT
δ=

P
P P

Q U V
C P

dT T T
δ ∂ ∂   = = +   ∂ ∂   

H U PV= +
P

P

H d H
C

T d T
∂ = = ∂ 
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Capacités calorifiques massiques cV et cP

(c moyen ou c (T) ~ constante)

Capacités calorifiques molaires cV mol et cP mol

f i

Q Q
c

m.dT m(T T )
δ= =

−

f i

Q
T T

mc
− =f iQ mc(T T )= −

p  m o l
P

1 Q
c

n d T
δ =  

 
v  m o l

V

1 Q
c

n d T
δ =  

 

p p p  m o l

v v v  m o l

C c c

C c c
γ = = =
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Exemple de l’air - T = 300 K, P = P0 = 1 bar

Q1 = Q2   ⇒ T1 < T2

cpair
= 1,006. 103 J. kg -1.K-1

cvair
= 0,720. 103 J. kg -1.K-1

Liquides:  cp # cv du fait de leur relative 
incompressibilité

cp(eau liquide) = 4,18.103 J.kg-1.K-1  (1 kcal.kg-1.K-1)

V = Cte

Q1 Q2

P = Cte

T1 T2
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Chaleur réaction chimique  
à pression constante  Q = ∆H

+ =

⇒

H = U + PV ∆HAC + ∆HCB + ∆HAD + ∆HDB

∆∆∆∆H = Q
A      B

dH dU PdV VdP

dH Q VdP

or dP 0

= + +
= δ +

=

C
∆HAC

D

BA

∆HAC

∆HDB∆HAD

∆HCB
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Expérience de Joule-Kelvin

• Le gaz initialement 
contenu dans A se 
détend (A+B) mais à
l’équilibre T reste 
inchangée

• U ne dépend que de la 
température

• U ne dépend pas  du 
volume du gaz

CALORIMETRE

EAU

Teau

A B

U = U(T)
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Transformation adiabatique réversible d’un gaz 
parfait ( δδδδQ = 0)

Compression : T augmente Détente : T diminue

Démonstration :

44

PV cteγ =
1

cte
T

V γ−
=

vd U P d V C dT (1)= − =

v

d V
C dT R T 0     (2 )

V
+ =

p

v

CdH
                  (3)

dU C
= = γ

VdP dP dV
0

PdV P V
ln P ln V cte

⇒ γ = ⇔ + γ =
−

⇒ + γ =
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CapacitCapacitéé calorifique calorifique àà volume constant (volume constant (CV) d'un 
gaz parfait polyatomique

U dépend également des énergies de rotationet de    
vibration
Exemple : GP diatomique

45

mol A B

5 5
U N k T RT

2 2
= =

v
V

U dU
C

T dT
∂ = = ∂ 

cv mol

log température (K)

7/2 R

H2 (1 mole)
(dihydrogène)

+ rot
trans

+ vibr

250    1000

5/2 R
3/2 R
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Changement de phase d'un corps pur

• Phases solide, liquide ou 
gazeuse (vapeur)

• Changements de phase : à T 
bien définie

• Courbes d'équilibre : fusion, 

vaporisation, sublimation.

• Point triple t : 3 phases sont 
en équilibre simultanément

• Point critique C

P

T

fu
si

on

sublimation
vaporisation

SOLIDE LIQUIDE

VAPEUR

t

C

Diagramme de phase
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47Diagramme de Phase de l’Eau

E

P

T

B'

D

Pt critique

D'

B

F

Pt triple

SOLIDE
LIQUIDE

VAPEUR

A

A’

A’’

c

temps

Tvaporisation
Tfusion

A

B c
D

LIQUIDE
SOLIDE

VAPEURT
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Chaleur Latente L de changement de phase

Chaleur Q absorbée ou produite par unité de masse lors d'un 
changement  de phase à P= constante.

Exemple pour l’eau :

Tv = 100 °C
Lv vaporisation = 2255 kJ.kg-1

Lf fusion = 333 kJ.kg-1 Tf = 0°C

Ls sublimation

Apport d'énergie à
pression constante :
P = Patm = 1,013.105 Pa

T

temps

Q m L= ⋅
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Changements de phase liquide-vapeur

V

P

T

Ppalier =  Pression de
vapeur saturante

liquide

vapeur

CP

T

T < TC

TC

Palier Liquéfaction

Les courbes en vert 
représentent des états 
d'équilibre entre phases 
liquide et vapeur

Psat
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Ébullition  & évaporation

1. L’évaporation est quasi-
instantanée si le vide est 
fait (ébullition)
(P = Pvapeur saturante)

2. Si Patm (air)
P = Patm + Pvapeur saturante

L’équilibre est peu 
modifié par la présence 
de l’air

# Instantanée lente

AIRVIDE

ENCEINTE FERMEE

1 2
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Un autocuiseur, de volume 10 L, est rempli àθ1 = 20°C d'une 
masse d'eau m, et d'air sous Patm. On le ferme, et on le porte à
θ2 = 120°C. Quelle est alors sa pression maximale ? La vapeur d'eau 
sèche se comporte comme un gaz parfait. La Pvsde l'eau est (θ/100)4

en atm si θ est en °C.

On donne : 1 atm = 1,013.105 Pa et la masse molaire de l’eau        
MA = 18 g/mol.

S’il n’y a pas assez de liquide → vapeur sèche Pvapeur = nRT/ V

Limite Pv = Pvs→ n = PVS.V/ RT = 0,64 mol (m = 11,5 g) 51

air(120 C)

air(20 C)

max

P T(393 K)
1,34

P T(293 K)

P 1,34 2,07 3,41 atm

°

°

= =

= + =

Pmax = Pair + Pvapeur

assez de liquide pour 
équilibre liquide – vapeur :
PVS = (120/100)4 = 2,07 atm
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EVAPORATION

A l'air libre pas d'état d'équilibre :   
la vapeur formée s'échappe, la PVS  n'est 
pas atteinte. 

Bilan entre    et

molécules qui 
s'évaporent

molécules qui 
se condensent

On augmente la 
vitesse 
d’évaporation 
en éliminant  la 
vapeur formée 
(courant d'air)
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EVAPORATION - théorie cinétique
• Molécules qui s'évaporent ont assez d'EC pour échapper  

à l'attraction des autres molécules du liquide

• Molécules qui restent ont une vitesse plus faible d'où

Refroidissement du liquide lors de 
l'évaporation



54
54

Ébullition
• La vitesse d'évaporation augmente avec T

• Quand T atteint une certaine valeur, le liquide 
bout (Te = cte à P donnée)

• La température d'ébullition est celle pour laquelle 
la PVS est strictement supérieure à la pression P 
que supporte le liquide (tous gaz confondus)

⇒ courbe d'équilibre liquide - vapeur 

relation entre P et Te

ex : pour l’eau Te  = 100°C à P atm
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Au delAu delàà de la Tde la T°° dd’é’ébullition en vase clos :  bullition en vase clos :  
autoclaveautoclave

On peut chauffer de        
l'eau en autoclave             
à plus de 100°C sansla 
faire bouillir 

en réglant (soupape)

à une pression > Patm

Te  > 100°C liquide

AIR (PAIR) 
+ 

vapeur (PVS) 

PT = PAIR + PVS

Ébullition impossible  
(PT > PVS)
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7.7. Le 2Le 2èèmeme principe de la TDprincipe de la TD

Entropie Entropie -- DDéésordre et sordre et 
spontanspontanééititéé
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Insuffisance du 1er Principe
L'évolution naturelle des systèmes physiques

macroscopiques se fait selon un sens privilégié.

L'évolution inverse ne se produit pas spontanément.

Transformation réciproque de chaleur en travail ?   
W → Q, mais Q →W ?

• 2èmeprincipe : Irréversibilité des processus naturels 
macroscopiques

– Énoncé de Clausius

– Énoncé de Kelvin :
"Il n‘existe pas de moteur qui puisse
produire du travail à partir
d'une seule source de chaleur."

QQ
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Énoncé de CLAUSIUS
• Si Q passe spontanément de A vers B alors le passage de B vers A est 

impossible spontanément. Il faut faire appel à un réservoir de chaleur.

• La chaleur ne passe pas spontanément d’un objet froid à un objet 
chaud.

Cycle ditherme frigorifique

Milieu extérieur

Réfrigérateur
Climatiseur

Pompe à chaleur

Source
chaude

Tc

Source
froide

TfMachine 
frigorifique

Qc Qf

W



59
59

Forme microscopique – 2èmeprincipe
Les systèmes (grand nombre de particules) évoluent  à partir

de vers des

Approche statistique
• Un même état macroscopiquepeut résulter d'états microscopiques

(de même énergie pour un système isolé) très divers.

• Le nombre des états accessiblesest astronomique ⇒ information 
statistique suffisante

• Hypothèse: tousles états microscopiques accessibles  à un système 
isolé ont des probabilités égales

configurations 
ordonnées
(improbable)

configurations plus 
désordonnées 
(plus probable)
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Approche statistique (suite)
Exemples :

• N molécules discernables :
2N configurations microscopiques possibles

• N molécules indiscernables :
(N + 1) états macroscopiques

Probabilité d'observer un état macroscopique constitué de 
n molécules dans (1) :

N = 3

(1) (2) (1) (2)

N N N
n
N

1 N! 1 1
P(n) C (n)

2 n!(N n)! 2 2
     = = = Ω     −     

Ω : nombre d'états microscopiques (complexions) 
correspondant à un état macroscopique donné
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Ω(n) maximum "aigu"
pour n = N / 2

Évolution : vers l'état macroscopique le plus probable 
qui correspond au nombre d'états  microscopiques 
maximum 

Cet état est donc l'état d'équilibre

L’état macroscopique correspondant à Ω maximum 
est tellement plus probable que statistiquement il ne 
s’en écarte pas.
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Détente Joule-Kelvin

Évolution spontanée & irréversible vers Ω max
A l’équilibre probabilité maximale

et beaucoup plus élevée
que les autres d’avoir une

répartition égale dans 
les 2 compartiments

Désordre 
Maximum

(1)

Ω = 1

Ω = max

(2)
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L'entropie S dL'entropie S dééfinition probabilistefinition probabiliste

• Soit S, l'entropie du système, définie par

kB constante de Boltzmann

• Évolution (système isolé) : 
– le système évolue spontanément vers les états de 

plus grand Ω ⇒ ∆Ω > 0

– donc l'entropie augmente   ∆S > 0

Entropie maximale quand l'équilibre est établi.

B S k n  = ⋅ Ωℓ
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L'entropie SL'entropie S
• Transf. réversible (ex sublimation)

S = fonction d’état (ne dépend que de I et F)

• Transf. réversible - système isolé: ∆S = 0
• Processus irréversibles (réels)

• 3ème principe TD (principe de Nernst)
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Q
S

T

∆∆ =

F

I

Q Q
dS        S

T T

δ δ= ⇒ ∆ = ∫

2 A BS S S∆ = −

1 B AS S S∆ = −
T

A V

B

F

I

Q
S

T

δ∆ > ∫
T 0  K S 0      ( 1)= ⇒ = Ω =
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8.8. Enthalpie Libre etEnthalpie Libre et

Loi dLoi d’’Action de MasseAction de Masse
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ENTHALPIE LIBRE

Transf. isotherme – Spontanée si ∆G < 0
G H T S∆ = ∆ − ∆

−T∆S

∆H

RARE

−T∆S

−T∆S

∆H
∆H

∆G

∆G
∆G

∆G

G H T S U PV TS≡ − ∆ ≡ + −
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Enthalpie libre d’un système vivant

Avec

⇒ car 

Système vivant à T ambiante et P constante (Patm) :

pour 1 système isolé à l’équilibre

Enthalpie libre minimum
Système vivant α en interaction avec le milieu extérieur
⇒ Transformations pour que G minimum (∆Gα < 0 pour 

transformations spontanées).

Échanges à T constante (Tα = Tm ext) et à P = Patm :
⇒ ∆Hα = ∆Qα ∆Qα = − ∆Qm ext et     ∆Sm ext = ∆Qm ext / Tm ext

Avec (2èmeprincipe) ⇔

dG d(H TS) dH TdS SdT= − = − −
dH dU PdV VdP Q VdP= + + = δ +
dG VdP SdT= − Q TdSδ =

dG 0=

G H T Sα α α α∆ = ∆ − ∆

m  ext TotalG Q T S T Q T S T Sα α α α α α α α∆ = ∆ − ∆ = − ∆ − ∆ = − ∆

TotalS 0∆ ≥ G 0α∆ ≤
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Réactions chimiques

L’enthalpie libre Gα du mélange Α, Β passe par un 
minimumminimumminimumminimum représentant la position d’équilibre du 
mélange et donnant la valeur du nombre de moles nA
de A (et donc de B) à l’équilibre.
GGGG = potentiel thermodynamique potentiel thermodynamique potentiel thermodynamique potentiel thermodynamique (analogie avec Ep)

A  B�

Gα

nA

min
An

∆G = 0

A  B�
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Barrière de Potentiel
G

Sens de la réaction A → B

Produits de
réaction

Réactifs ∆G(0)

∆G(1)

∆G(0)

∆G(2)

Action du catalyseur (enzyme)

G
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ENTHALPIE LIBRE d’un GP ou d’un mélange de GP

• Détente isotherme d’un GP à la température T uniforme :

• Par intégration :

• Avec P0 = 1 bar
(P en bar)

Enthalpie libre standard
• Pour un mélange de GP (solutions diluées), avec gi enthalpie libre 

molaire et ni nombre de moles de chaque espèce du mélange

70

nRTdP
dG VdP

P
= =

k

i i
i 1

G (P, T) n g
=

= ∑

0
0

P
G (P, T) G (P , T) nRT. n

P

 
= +  

 
ℓ

( )0G (P, T ) G (T ) nRT. n P= + ℓ

dG VdP SdT= −

( )0G (T)
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Réactions chimiques - Loi d’action de masse (1)

• Potentiel chimique µi = enthalpie libre molaire gi

• Pour un mélange gazeux avec pressions partielles pi :

• Condition d’équilibre (dG = 0) ⇒ :

aA bB cC dD+ +�

i i
i A,B,C,D

G n
=

= µ∑i
i P,T

G

n

 ∂µ =  ∂ 

(0)
i i i 0RT n(P P )µ = µ + ⋅ℓ

A B C Da b c dµ + µ = µ + µ
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Réactions chimiques - Loi d’action de masse (2)

• Loi d’action de masse pour les gaz (pressions) :

• Pour des réactions en solution diluée (concentrations) :
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( ) ( )
( ) ( )

( )
( )0c d G

C D RT
0 pa b

A B

P P
P e K (T)

P P

−∆
δ 

= = 
  

[ ] [ ]
[ ] [ ]

c d

c a b

C D
K (T)

A B
=

( ) ( )
( ) ( )

( )
c d

0C D a b c d
0a b

A B

P P
RT. n .P G 0

P P
+ − −

 
+ ∆ = 

  
ℓ


